Refine Your Search

Topic

Author

Search Results

Technical Paper

Simultaneous Measurement of Light Emission and Absorption Behavior of Unburned Gas During Knocking Operation

1993-10-01
932754
With the aim of elucidating the mechanism generating knock, an examination was made of the preflame reaction behavior of end gas in the combustion chamber in the transition from normal combustion to abnormal combustion characterized by the occurrence of knocking. Simultaneous measurements were made in the same cycle of the light absorption and emission behavior of the OH (characteristic spectrum of 306.4 nm), CH (431.5 nm) and C2 (516.5 nm) radicals in the end-gas region using spectroscopic methods. The absorbance behavior of a blue flame prior to autoignition is believed to be an important factor in the mechanism causing knock.
Technical Paper

Clarification of Abnormal Combustion in a Spark Ignition Engine

1992-10-01
922369
With the aim of elucidating the mechanism causing abnormal combustion, a study was made of light emission and absorption characteristics at wavelengths corresponding to the spectra of the OH (characteristic spectrum of 306.4 nm), CH (431.5 nm), C2 (516.5 nm) radicals. Spectral properties were measured in the end-gas region of the cylinder for various types of fuel having different octane numbers. During combustion in an actual engine, the behavior of the CH and C2 radicals prior to the occurrence of abnormal combustion characterized by knock is indicative of behavior in the negative temperature coefficient (NTC) region. The experimental results revealed that the behavior of the OH, CH, C2 radicals differs between normal and abnormal combustion.
Technical Paper

A Newly Developed Variable Valving Mechanism with Low-Mechanical Friction

1992-02-01
920451
Since the intake and exhaust valve timings that provide the best fuel economy, idle stability, or highest power change according to the engine operating zone, a variable valve timing system is very beneficial. Also, roller followers, which reduce mechanical friction loss of a valve train mainly at low engine speed, are commonly used to improve fuel economy in urban driving conditions. This paper presents a newly developed 4-valve variable-valve-timing mechanism with roller followers. Different intake- and exhaust-valve timings and lifts are selected independently, depending upon whether engine speed is low or high. Durability tests of running at maximum engine speed and switching between low- and high-speed cams were conducted and good test results were obtained.
X